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In this paper, we extend the theory of melting entropy of metals, of Omini', based on 
the Percus-Yevick' collective coordinate theory of liquids, to binary liquid alloys. We 
reformalate Omini's use of the Percus-Yevick theory to include binary liquid alloys and 
calculate the long wavelength limit of the binary liquid alloy structure factor as a func- 
tion of solute concentration for the systems: Li-Na, K-Rb. Rb-Cs, Al-Zn, Zn-Ca and 
AI-Ga which are the most nearly equi-valent and equi-volumeatom pairs Omini worked with. 

1. THEORY OF THE MELTING ENTROPY OF PURE LIQUID METALS 

Omini has recently applied the Percus-Yevick collective coordinate theory of 
simple liquids to  calculate the melting entropy of metals. We review his 
formulation in depth so that we can build upon it when the problem of alloy 
melting is presented in Section'. 

Omini relates the melting entropy to the long wavelength limit of the Iiq- 
uid structure factor, S(0). As in the Percus-Yevick theory of simple liquids, 
the potential energy. 

(1/2) Z. V(A~ -xj) = (1/2) Z (2a)-' J d3k eik'&i -xj) ?(K) (1) 
i#J  i#j 

~~~ 

t Present Address: 68 Stratford Road, Brooklyn, New York 11218, U.S.A. 
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218 E. SIEGEL 

is approximated by 

where the coefficients "k are chosen to optimize the problem, Collective 
coordinates are defined 

and represents the potential energy of an assembly of 3N harmonic oscillators, 
with angular frequencies 

where m is the atomatic mass. Ascarelli, Harrison and Paskin3 have shown that 
the long wavelength limit of the liquid structure factor is 

so that the Percus-Yevick dispersion relation for the liquid phonons is 

wkPy = k2 kBT/mS(O) (7) 

We must choose the set {k} by physical insight unless we adopt the 
Ascarelli-Harrison-Paskin relation. Omini's basic assumption is that melting is 
related to the long wavelength low frequency part of the Percus-Yevick 
liquid phonon spectrum. He bases thjs assumption on the findings of March4 
and Mukherjee' that the melting temperature and vacancy formation energy 
of metals are related, and the Debye temperature of the solid is proportional 
to the square root of the vacancy formation energy, U. Following Enderby 
and March6 

where v, is the sound velocity in the liquid metal and (Y is a constant. 
vs is determined by the long wavelength, low frequency property of the solid 
so that T,, the melting- temperature, is determined by the long wavelength 
properties in this approximation. 
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MELTING A N D  STRUCTURE OF LIQUID ALLOYS 219 

The Percus-Yevick spectrum has a high frequency cut-off at the maximum 
wavevector 

Q = ( 1 8 n 2  p/m)l13 = 3'13 kDebye  (9) 

By ignoring higher frequency and wavevector components, k > Q, we assume 
a short wavelength cut-off radius in configuration space, a-2 n/Q such that 
the pair potential is unimportant for r > a. Qo- 5.3 for many liquid metals, 
where u is the hard core diameter, so that a=1.18o, a reasonable value. The 
entropy of the 3N harmonic oscillators is given by 

where the frequencies W i y  are given by (5) or (6) .  By replacing the summa- 
tion with a continuous integration for small k at the melting temperature 

+ (ehwPY(k)/kBTM)- 1 ) - ' )  -kB In ( 2  sin h @apy (k)/kBT)) 

Omini rewrites this as 

SLiq = 9 n k, ((10/2) + 11 + 12)  

1, = I Y' ( * w P Y ( y ) / k ~ T ~ )  dy 

(1 2 )  

where 
1 

(13) 

1 1  = Y 2  @Up' (y)/k,T~)(e~~~~(y)/~B~M-l)-l dy  (14) 
0 

1 
l2 = - I y2 In (2 sin h ffiaPY(y)/kBTM)) dy 

A S/R = 9 ((10/2) + 11 + 12)  -(sSoljd/R) 

(1 5 )  
0 

so that the molar entropy change upon melting is 

(1 6) 

where R is the gas constant and SSolid is the molar entropy of the solid 
at the melting temperature, Ssolid is taken from the Debye theory by Omini. 
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220 E. SIEGEL 

2. LfOUlD ALLOYS AND MELTING 

We reformulate Omini's theory for a binary alloy, AB, and ternary alloy, 
ABC. The potential energy of the liquid alloy is, according to an alloy 
analogy of the Percus-Yevick theory. 

In the Percus-Yevick theory, we approximate these by 

The collective coordinates are two types in the.binary alloy and of three 
types in the ternary alloy 

and the Percus-Yevick potential energy becomes 
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MELTING AND STRUCTURE OF LIQUID ALLOYS 22 1 

such that N in the pure metal is the sum of NA and NB in the binary liquid 
alloy and NA , N B  and NC in the ternary liquid alloy. Each pure phonon term 
now has an interaction part, connected with the joint particle coefficients 
VkAB etc. and the joint particle numbers, NAB etc., which express solute 
density, such that 

N =  NA+NB+NAB, binary alloy (26) 

(27) 

and 

N = NA+NB+NC+NAB+NAC+~BC, ternally alloy 

Thus, the Percus-Yevick 3N harmonic phonon system has become a system 
of 3N anharmonic phonons, but with an anharmonicity not due to tempera- 
ture. In a liquid metal the 3N liquid phonons have uncoupled equations of 
motion, while in the liquid alloy the 3N liquid phonons have coupled 
equations of motion. Modes that, in the monatomic liquid metal were har- 
monic and undamped, become anharmonic and damped in the binary of 
ternary liquid alloy. The damping is caused by the new solute-solvent inter- 
action, which is no longer transformed away, as was the solvent-solvent 
interaction in the monatomic liquid metal when the collective coordinate 
“liquid phonons” were defined. New modes, presumably exist in the liquid 
alloy, composed of collective vibrations of solute and solvent particles, 
“liquid alloy phonons”. For example, in the binary alloy, we have number 
factor NAB, where in the pure solvent or pure solute we would have had 
NA or NB only. Similarly, in the ternary liquid alloy, we have number 
factors NAB, NAC and NBC, not found in the pure solvent nor solute liquid 
metals. For a binary alloy AxBl.x the interaction potential is 
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222 E. SIEGEL 

“ i t B y C 1 - x - y  = (1/2) [VkX(qkXq-kX-X) 
{Ir} - - - 

+ VkY(qRYq-kY-y) - -  + Vkl-x-y(qkl-x-y - - q-kl-x-Y- - (1 -X-Y)) + 

+ 2VkY(l-x-Y) - (qkYqpkl-X-Y- - -  Y(1 -X-Y)) 1 (29) 

+ 2Vkxy(qkxq-ky-xy) + 2 ~ k X ( 1 - X - Y ) ( q k x q _ k 1 - x - y - ~ ( 1 - ~ - ~ ) )  + 
- -  - - -  - 

One way out of this anharmonic liquid phonon regime is to transform the 
collective coordinates so as to decouple the solute-solvent interaction 
but clearly, since we are going to have coupled solute-solvent phonons as 
well as pure solute and solvent phonons in the liquid alloy. we should 
use (28) and (29) as is. Actually, most liquid phonons in the liquid alloy will’ 
be composed of both solute and solvent atom vibrations, so the VkAB set of 
coefficients should dominate the VkA and VkB set in a liquid binary alloy, 
and the same should hold true in the liquid ternary alloy. 

We proceed to follow Omini’s analysis, concentrating on an application 
to liquid alloys. The 3N Percus-Yevick harmonic oscillators have a dispersion 
relation for a binary liquid alloy of form 

where mAB-l = mA-’ + mB-’ is the reduced mass of the “binary liquid 
alloy particle.” For the ternary liquid alloy . 

(31) 

where the “ternary liquid alloy particle” has an effective mass mABC-’ = 
mA-’ +mS-’  + * - I .  
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MELTING AND STRUCTURE OF LIQUID ALLOYS 223 

Working through -the Ascarelli-Hamson-Paskin relation, relating S(0) to 
the .set Vk, and assuming it is at all applicable to a liquid alloy, we write - 

SA(0) = kBT/(1 +VkA/kgT) - 

SB(0) = kB T/(1 + Uk - A/kB T) 

(32) 

(33) 

SABC(0) = kBT/(I +VkABC/kBT) (38) 

where we expect SABC (0) to dominate all other liquid structure factor long 
wavelength limit in the liquid ternary alloy and SAB(0) to dominate 
SA(0) and SB(0) in the liquid binary alloy. The Percus-Yevick dispersion 
relation for the liquid binary alloy liquid phonons becomes. 

Cdk - py AB = k [ (kBT/mAB) (1 /SAB(0))] 1’2 

Cdkpy - ABC = k [ (kBT/mABC) (1  /sABC(o))]”’ (40) 

(39) 

and the Percus-Yevick dispersion relation for the liquid ternary alloy liquid 
phonons becomes 

where we have utilized effective liquid structure factor long wavelength 
limits 

SAB(O)-1 = sA(o)-I + SB(O)-’ (41) 

in the binary alloy and 

SABC(O)-’ = SA(O)-I + SB(0)- + sc(o)-’ (42) 

in the liquid ternary alloy. We can now follow Omini’s analysis exactly, 
bearing in mind that these effective liquid alloy structure factors are approxi- 
mations invented to allow us to do so, and thus develop a first approximation 
to the true state of affairs in liquid binary and ternary alloys. 
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224 E. SIEGEL 

The upper cut-off in the dispersion relation for liquid alloy phonons in a 
liquid binary alloy becomes 

QAB =(187T2 pAB/mAB)1'3 (43) 

and the upper cut-off in the dispersion relation for liquid alloy phonons 
in a liquid ternary alloy becomes 

QABC = ( 1 8 ~ '  pABC/mABC)1'3 (44) 

where pAB and pABC are the binary and ternary liquid alloy densities, 
respectively. These Q values are derived from 

(L/2n)3 (4nQAB /3 = 3 (NA + N B )  (45) 

(46) 

in the binary liquid alloy and 

( L / ~ T ) ~  (4nQABC3/3) = 3 (NA + NB + Nc) 

by analogy with Omini. 
The entropy of the liquid binary alloy at the melting temperature is 

+ (er'"kAB/kBT, -l)-')-kB h ( 2  Sin h ( % w k A B / 2 k ~ T ~ ) ) }  (47) - 

and for the liquid ternary alloy 

f (e'"kABC/kB TM - l ) - '  -kB h ( 2  Sin h @lwkABC/2kgT~)) - 1 (48) 

Converting the sums to low k integrals, as Omini did in the liquid metals, 

Q A B  sf$ = (L/27~)~  4n J kZ dk { (%aAB(k)/TM) [ (1/2) -t 
0 

+ (PwAB(k) /kBTM -I ) - '  ] - kB ln(2 sin h (%wAB(k)/kBT~))k49) 

and 
Q ABC 

SABC = ( L / ~ T ) ~  477 kZ  dk { (%uABc(k)/TM) [(I/?) + 
Eq n 
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MELTING AND STRUCTURE OF LIQUID ALLOYS 225 

As before, these can be rewritten as 

and 

where the integrals are like those in (13)-(15), but with upy A B  (y) or 
aPy ABC(y) replacing upy(y)  there. Thus, the entropy change upon melting 
for binary and ternary alloys is 

A SAB/R = 9 ((IOAB/2) + I1 AB + I2 AB) - (St: /R) (53) 

and 

A SABC/R = 9 ((IOABC/2 + 12ABC + I2 ABC) - (Skzc /R) (54) 

Our aim, as Omini stresses, should be to utilize the low wave vector (long 
wavelength) structure of the liquid system; the liquid structure factors, 
which are easily measurable, to predict the melting entropy. Perhaps in 
a few isolated cases we can use these liquid structure factors, if known, 
to predict the melting temperature dependence upon solute concentration, 
but far more experimentally is known about the dependence of melting temp- 
erature on solute concentration than alloy liquid structure factors, so we 
prefer to work in the former vein and utilize these relations to understand 
the calculated liquid alloy structure factor long wavelength limit in terms of 
the physical structure and dynamics of the liquid alloy. 

Omini's technique at this point was to utilize the theoretical structure 
factors of Ashcroft and Lekner.7 For light metals (Li, Na, K, Rb, Cs, Mg, A1 
and Zn) a packing fraction of 77 = 0.45 sufficed, while for heavy metals (Ca, 
Sn, Pb and T1) a packing fraction of 0.45 would have severely overestimated 
the melting entropy, so one of 77 5 0.15 is more suitable. For these heavy 
metals the neutron scattering results of Egelstaff et al.' yield S(0) curves, 
shown in Figure 2 of Omini's paper,with Spb(0)=0.009, SSn(0)=ST'(O)=0.008. 
In Table I we reproduce Omini's estimated values for the integrals I,, I l  and 
I2 in the pure liquid metals from the Percus-Yevick liquid phonon dispersion 
relations. We note that, for all metals treated except Li, I2 > I1 >Io.  

When it comes to the evaluation of the melting entropy of liquid alloys, 
we should use the definitions for these integrals, as in (13)-(15) but with 
uAB (y) replacing up' (y) and with TMAB replacing TM in the liquid binary 
alloys and similar replacements in the liquid ternary alloys. The depression of 
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226 E. SIEGEL 

TABLE I 

Omini's compilation of relevant integrals, melting entropies and cut-off 
wavevectors for the solute and solvent metals in these binary liquid alloys 

Metal Q OD(OK) TM (OK) o(Ao) I, I, I, Ssol/R (kg units) 

Li 1.975 430. 452. 2.70 0.175 0.254 0.218 4.20 
Na 1.625 160. 371. 3.28 0.090 0.294 0.454 6.52 
K 1.307 100. 337. 4.07 0.058 0.308 0.599 7.62 
Rb 1.223 59. 312. 4.30 0.039 0.317 0.728 8.95 
Cs 1.138 43. 301. 4.73 0.029 0.322 0.840 9.86 
Mg 1.901 342. 924. 2.80 0.066 0.306 0.560 6.99 
Al 2.108 390. 933. 2.53 0.066 0.303 0.550 6.61 
Zn 2.240 235. 693. 2.38 0.052 0.308 0.620 7.26 
Ga 2.102 240. 303. 2.54 0.071 0.297 0.509 4.75 
Pb 1.754 88. 600. - 0.023 0.319 0.886 9.82 
TI 1.805 100. 576. - 0.033 0.318 0.790 9.30 
Sn 1.843 180. 505. - 0.049 0.309 0.655 7.11 

the melting temperature by solute addition in liquid binary alloys is shown, 
after Hanseng , in Table 11. 

For binary liquid alloys, our aim here is not to calculate the melting 
entropy, as Omini did for pure metals, but to utilize concentration weighed 
interpolations of I,, I 1  and 12, the known solute, solvent and binary alloy 
melting temperatures and the known solute and solvent Percus-Yevick liquid 
phonon dispersion relations to predict the unkown liquid alloy phonon 
dispersion relations, upy AB(y). In the binary liquid alloy we assume 

x IoA + (1-x) I,B = IoAB (5 5) 

x I , A  + (I-x) I,B = I I A B  

x 12'4 + (1-x) 12B = I 1 A B  

and in liquid ternary alloys 

x I o A  + y IoB + (I-x-y) I0C = 1,ABC 

x I2 * + y I2B + (1-x-y) 12C = 12ABC 

Then, we utilize (7) to relate wAB(y) to the long wavelength limit of the 
liquid binary alloy structure factor, SAB (0). For ternary liquid alloys, 
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228 E. SIEGEL 

which we do not treat, we would follow the same program, but with uAB(y),  
uAC(y)  and uBC(y) from the binary liquid alloy problem to determine the 
unknown ternary liquid alloy Percus-Yevick dispersion relation uABC(y). 
Then, we would utilize (7) to relate.uABC(y) to the long wavelength limit 
of the ternary liquid alloy structure factor, SABC(0). The versions of (7) 
we would use are respectively, for the binary and ternary liquid alloy 

uABC(y)* = y2 kBT/mABC SABC(0) (58) 

Our simplified treatment of binary and ternary liquid alloys suffers from 
one flaw. Following March” we note that to completely determine a binary 
alloy, we need the three liquid structure factors, SA(0), SB(0), and SAB(0), 
and to completely determine the ternary alloy, we need the liquid structure 
factors: SA(0), SB(0), Sc(O), SAB(0), SAC(O), SBC(0) and SABC(0). We 
shall follow March’s (page 77) artifice of considering only binary alloys and 
ternary alloys whose solute and solvent atoms have similar atomic volume 
and atomic valency. Then, for binary alloys 

SA(0) = SB(0) = SAB(0)  
and for ternary liquid alloys 

(59) 

SA(0) = SB(0) = Sc(0) = SAB(0) = SAC(0) = SBC(0) = SABC(0) (60) 

Out of Omini’s table of calculated I,, 1, and I2 integrals, the only equi- 
volume, equi-valent combinations whose binary liquid alloys we consider are 
Li-Na, Na-K, K-Rb, Rb-Cs, Al-Zn, Zn-Ga and A1-Ga. Were we considering 
ternary alloys here explicitly, the most nearly equi-volume, equi-valent ternary 
alloys are: Li-Na-K, Na-K-Rb, K-Rb-Cs. Less equi-volume, equi-valent binary 
alloys are: Pb-Sn, Mg-AI, Mg-Zn, Mg-Ga, Pb-Mg, and Mg-Sn, but we are not 
justified in making the March approximation about the equality of the 
solute, solvent and alloy liquid structure factors, and so we do  not treat 
this latter group either. 

3. CALCULATION OF BINARY LIQUID ALLOY STRUCTURE FACTORS 
AT LONG WAVELENGTHS 

The binary combinations of Omini’s pure metals we treat are nearly equi- 
volume and equi-valent. The results are shown in Table 11, where we use 
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MELTING AND STRUCTURE OF LIQUID ALLOYS 229 

the virtual crystal approximation (41) to define the binary liquid alloy 
integral, IoAB, I1 AB and Iz AB as concentration weighed averages of IoA and 
IoB for the pure solute and solvent, and similarly for I I A ,  I I B ,  IzA and 
Iz B. Also listed are TMAB values for the actual binary liquid alloy systems, 
as taken from H a n ~ e n . ~  We utilize IoAB and convert the integral to a finite 
sum over the eight points given for the pure solvent dispersion relations. 
The celation we use is reexpressed in terms of the Ascarelli-Harrison-Paskin 
relation between apy ’ and S(0) for the alloy as 

I, ABx(X) = ( h / k ~  1 / 2 )  8 yi3 (mAB SAB(0)/TAB~)- (61) 
Yi 

Instead of proceeding this way, we can directly utilize the virtual crystal- 
like dispersion relations of the liquid alloy as 

w& = X U k P Y  A +(l-X)Wkpy (62) = k (  kB T h B / m A B  s AB ( 0))1/2 

f I I I 

0 50 I 

Percent Solute 

0 

FIGURE 1 
melting temperatures as a function of solute concentration. 

Long wavelength limits of the alloy liquid structure factors at their 
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230 E. SIEGEL 

so that 

taking the lowest w and y values from Omini’s Table I.  
The results for SAB (0) are shown in Table 11, and plotted in Figure 1 as a 

function of alloy solute concentration, x. We see that for the most nearly 
equi-valent and equi-volume binary solute-solvent pairs chosen from those 
considered by Omini, the long wavelength limit of the liquid structure factor 
at the melting temperature has no common form as a function of solute con- 
centration in the virtual crystal approximation. For Rb-Cs it exhibits two 
steep maxima (at Rb75C~25 and Rb25C~75)  and a steep minimum (at 
RbSOCsS0). For Li-Na, S(0) exhibits a minimum (at Li75Na25), then a 
maximum (at Li75Nazs), then drops to the value for pure Rb. For Zn-Ga, 
S(0) rises monatonically to a maximum (at ZnzsGa7,), then drops off to the 
pure Ga value. For K-Rb S(0) is also monatonic to a maximum (at Kzs Rb75) 
then it falls to the value for pure Rb. For Al-Ga, S(0) rises again monatonically, 
but very slowly, and then more steeply to a maximum (at pure Ga). For 
Al-Zn, S(0) rises monatonically very slowly (like Al-Ca) to a maximum 
(at AlzsZn75), then it falls off to a low value (at pure Zn). No two of these 
trends on binary liquid alloy structure factors as a function of solute concen- 
tration are alike in detail, though K-Rb and Zn-Ga are similar, and AI-Ga and 
Al-Zn are similar out to 75% solute. As mentioned before, we did not attempt 
to reproduce the above results in ternary alloys for two reasons. Firstly, the 
use of the virtual crystal concept for a liquid binary alloy itself is not well 
founded, so that we feel that the errors incurred would be magnified if it were 
applied to a ternary liquid alloy. Secondly, there is a lack of empirical ternary 
alloy melting temperatures for equi-volume, equi-valent constituents. 

TM 

4. CONCLUSIONS 

We have shown how to describe the long wavelength limit of the liquid 
structure factor for a group of equi-valent, equi-volume binary liquid alloys, 
in analogy with the virtual crystal approximation as used in binary solid 
alloys. We have utilized the integrals of Omini to accomplish this, and have 
weighed them by the relative solute and solvent concentrations in the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1
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spirit of the virtual crystal approximation. The virtual crystal approximation 
in solid alloys is questionable at high solute concentrations, we so might 
still more severely question its use in a concentrated liquid alloy, in addition 
to which the question of whether it can be applied to a liquid alloy of any 
concentration might invalidate its use immediately. With these cautions, we 
have still proceeded to calculate S t i ( 0 )  at the alloy melting temperature for 
equi-valent, equi-volume pairs of solutes and solvents. The simplifying equal- 
ity of alloy Liquid structure factor to' the solute and solvent pure liquid metal 
structure factor will not hold for non-equi-valent, non-equi-volume solute- 
solvent pair alloys, and this calculation then cannot be done so simply. In this 
case, we would somehow have to calculate SA (0), SB (0) and S $ i ( O )  

separately, and it is not clear which T,, m or w [ y  values to  use to calculate 
these. 

TM TM 
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